
C++:

Operator Overloading in C++

Operator overloading is an important concept in C++. It is a type of polymorphism in which an

operator is overloaded to give user defined meaning to it. Overloaded operator is used to perform

operation on user-defined data type. For example '+' operator can be overloaded to perform

addition on various data types, like for Integer, String(concatenation) etc.

Almost any operator can be overloaded in C++. However there are few operator which can not

be overloaded. Operator that are not overloaded are follows

• scope operator - ::

• sizeof

• member selector - .

• member pointer selector - *

• ternary operator - ?:

Operator Overloading Syntax

Implementing Operator Overloading in C++

Operator overloading can be done by implementing a function which can be :

1. Member Function

2. Non-Member Function

3. Friend Function

Operator overloading function can be a member function if the Left operand is an Object of that

class, but if the Left operand is different, then Operator overloading function must be a non-

member function.

Operator overloading function can be made friend function if it needs access to the private and

protected members of class.

Restrictions on Operator Overloading in C++

Following are some restrictions to be kept in mind while implementing operator overloading.

1. Precedence and Associativity of an operator cannot be changed.

2. Arity (numbers of Operands) cannot be changed. Unary operator remains unary, binary

remains binary etc.

3. No new operators can be created, only existing operators can be overloaded.

4. Cannot redefine the meaning of a procedure. You cannot change how integers are added.

Overloading Arithmetic Operator in C++

Arithmetic operator are most commonly used operator in C++. Almost all arithmetic operator

can be overloaded to perform arithmetic operation on user-defined data type. In the below

example we have overridden the + operator, to add to Time(hh:mm:ss) objects.

Example: overloading + Operator to add two Time class object

#include <iostream.h>

#include <conio.h>

class Time

{

 int h,m,s;

 public:

 Time()

 {

 h=0, m=0; s=0;

 }

 void setTime();

 void show()

 {

 cout<< h<< ":"<< m<< ":"<< s;

 }

 //overloading '+' operator

 Time operator+(time);

};

Time Time::operator+(Time t1) //operator function

{

 Time t;

 int a,b;

 a = s+t1.s;

 t.s = a%60;

 b = (a/60)+m+t1.m;

 t.m = b%60;

 t.h = (b/60)+h+t1.h;

 t.h = t.h%12;

 return t;

}

void time::setTime()

{

 cout << "\n Enter the hour(0-11) ";

 cin >> h;

 cout << "\n Enter the minute(0-59) ";

 cin >> m;

 cout << "\n Enter the second(0-59) ";

 cin >> s;

}

void main()

{

 Time t1,t2,t3;

 cout << "\n Enter the first time ";

 t1.setTime();

 cout << "\n Enter the second time ";

 t2.setTime();

 t3 = t1 + t2; //adding of two time object using '+' operator

 cout << "\n First time ";

 t1.show();

 cout << "\n Second time ";

 t2.show();

 cout << "\n Sum of times ";

 t3.show();

 getch();

}

While normal addition of two numbers return the sumation result. In the case above we have

overloaded the + operator, to perform addition of two Time class objects. We add

the seconds, minutes and hour values separately to return the new value of time.

In the setTime() funtion we are separately asking the user to enter the values for hour, minute

and second, and then we are setting those values to the Time class object.

For inputs, t1 as 01:20:30(1 hour, 20 minute, 30 seconds) and t2 as 02:15:25(2 hour, 15 minute,

25 seconds), the output for the above program will be:

1:20:30

2:15:25

3:35:55

First two are values of t1 and t2 and the third is the result of their addition.

Example: overloading << Operator to print Class Object

We will now overload the << operator in the Time class,

#include<iostream.h>

#include<conio.h>

class Time

{

 int hr, min, sec;

 public:

 // default constructor

 Time()

 {

 hr=0, min=0; sec=0;

 }

 // overloaded constructor

 Time(int h, int m, int s)

 {

 hr=h, min=m; sec=s;

 }

 // overloading '<<' operator

 friend ostream& operator << (ostream &out, Time &tm);

};

// define the overloaded function

ostream& operator << (ostream &out, Time &tm)

{

 out << "Time is: " << tm.hr << " hour : " << tm.min << " min : " << tm.sec << " sec";

 return out;

}

void main()

{

 Time tm(3,15,45);

 cout << tm;

}

Time is: 3 hour : 15 min : 45 sec

This is simplied in languages like Core Java, where all you need to do in a class is override the toString() method of

the String class, and you can define how to print the object of that class.

Overloading Relational Operator in C++

You can also overload relational operators like == , != , >= , <= etc. to compare two object of any class.

Let's take a quick example by overloading the == operator in the Time class to directly compare two

objects of Time class.

class Time

{

 int hr, min, sec;

 public:

 // default constructor

 Time()

 {

 hr=0, min=0; sec=0;

 }

 // overloaded constructor

 Time(int h, int m, int s)

 {

 hr=h, min=m; sec=s;

 }

 //overloading '==' operator

 friend bool operator==(Time &t1, Time &t2);

};

/*

 Defining the overloading operator function

 Here we are simply comparing the hour, minute and

 second values of two different Time objects to compare

 their values

*/

bool operator== (Time &t1, Time &t2)

{

 return (t1.hr == t2.hr && t1.min == t2.min && t1.sec == t2.sec);

}

void main()

{

 Time t1(3,15,45);

 Time t2(4,15,45);

 if(t1 == t2)

 {

 cout << "Both the time values are equal";

 }

 else

 {

 cout << "Both the time values are not equal";

 }

}

Both the time values are not equal

Operator Precedence and Associativity:
Precedence Rules: The precedence rules specify which operator is evaluated first when two operators

with different precedence are adjacent in an expression. For example: x=a+++b

This expression can be seen as postfix increment on a and addition with b or prefix increment on b and

addtion to a. Such issues are resolved by using precedence rules.

Associativity Rules: The associativity rules specify which operator is evaluated first when two operators

with the same precedence are adjacent in an expression. For example: a∗b/c

Operator Precedence: The following table describes the precedence order of the operators mentioned

above. Here, the operators with the highest precedence appear at the top and those with the lowest at the

bottom. In any given expression, the operators with higher precedence will be evaluated first.

LR= Left to Right RL=Right to Left

Category Associativity Operator

Postfix LR ++ --

Unary RL + - ! ~ ++ --

Multiplicative LR * / %

Additive LR + -

Shift LR << >>

Relational LR < <= > >=

Equality LR == !=

Bitwise AND LR &

Bitwise XOR LR ^

Bitwise OR LR |

Logical AND LR &&

Logical OR LR ||

Conditional RL ?:

Assignment RL = += -= *= /= %= >>= <<= &= ^= |=

C++ Functions

C++ functions are a group of statements in a single logical unit to perform some specific task.

Along with the main function, a program can have multiple functions that are designed for different

operation.

The results of functions can be used throughout the program without concern about the process and the

mechanism of the function.

In POP (Procedural Oriented Programming) language like C, programs are divided into

different functions but in OOP (Object Oriented Programming) approach program is divided into objects

where functions are the components of the object.

Generally, C++ function has three parts:

• Function Prototype

• Function Definition

• Function Call

C++ Function Prototype

While writing a program, we can’t use a function without specifying its type or without telling the

compiler about it.

So before calling a function, we must either declare or define a function.

Thus, declaring a function before calling a function is called function declaration or prototype which

tells the compiler that at some point of the program we will use the function of the name specified in the

prototype.

Syntax
return_type function_name(parameter_list);

Note: function prototype must end with a semicolon.

Here, return_type is the type of value that the function will return. It can be int, float or any user-defined

data type.

function_name means any name that we give to the function. However, it must not resemble any standard

keyword of C++.

Finally, parameter_list contains a total number of arguments that need to be passed to the function.

C++ Function Call

Function call means calling the function with a statement. When the program encounters the function

call statement the specific function is invoked.

Syntax
function_name(argument_list);

Here, function_name is the name of the called function and argument_list is the comma-separated list of

expressions that constitute the arguments.

The syntax is similar to that of prototype except that return_type is not used.

C++ functions definition

Function definition is a part where we define the operation of a function. It consists of the declarator

followed by the function body.

Syntax

return_type function_name(parameter_list)

{

 function body;

}

http://www.trytoprogram.com/cplusplus-programming

Call by Value and Call by Reference in C++
On the basis of arguments there are two types of function are available in C++ language, they are;

• With argument

• Without argument

If a function takes any arguments, it must declare variables that accept the values as a arguments. These
variables are called the formal parameters of the function. There are two ways to pass value or data to function in
C++ language which is given below;

• call by value

• call by reference

Call by value

In call by value, original value can not be changed or modified. In call by value, when you

passed value to the function it is locally stored by the function parameter in stack memory

location. If you change the value of function parameter, it is changed for the current function

only but it not change the value of variable inside the caller function such as main().

Call by value

#include<iostream.h>

#include<conio.h>

void swap(int a, int b)

{

 int temp;

 temp=a;

 a=b;

 b=temp;

}

void main()

{

 int a=100, b=200;

 clrscr();

 swap(a, b); // passing value to function

 cout<<"Value of a"<<a;

 cout<<"Value of b"<<b;

 getch();

}

Output

Value of a: 200

Value of b: 100

Call by reference

In call by reference, original value is changed or modified because we pass reference

(address). Here, address of the value is passed in the function, so actual and formal arguments

shares the same address space. Hence, any value changed inside the function, is reflected

inside as well as outside the function.

Example Call by reference

#include<iostream.h>

#include<conio.h>

void swap(int *a, int *b)

{

 int temp;

 temp=*a;

 *a=*b;

 *b=temp;

}

void main()

{

 int a=100, b=200;

 clrscr();

 swap(&a, &b); // passing value to function

 cout<<"Value of a"<<a;

 cout<<"Value of b"<<b;

 getch();

}

Output

Value of a: 200

Value of b: 100

Difference between call by value and call by reference.

 call by value call by reference

1
This method copy original value into

function as a arguments.

This method copy address of arguments

into function as a arguments.

2

Changes made to the parameter inside

the function have no effect on the

argument.

Changes made to the parameter affect

the argument. Because address is used

to access the actual argument.

3
Actual and formal arguments will be

created in different memory location

Actual and formal arguments will be

created in same memory location

Friend Function in C++
In C++ a Friend Function that is a "friend" of a given class is allowed access to private and protected data in that
class.
A function can be made a friend function using keyword friend. Any friend function is preceded
with friend keyword. The declaration of friend function should be made inside the body of class (can be anywhere
inside class either in private or public section) starting with keyword friend.

Why use friend function ?
You do not access private or protected data member of any class, to access private and protected data member
of any class you need a friend function.

Syntax

class class_name
{

 friend returntype function_name(arguments);
}

Friend class

Similarly like, friend function a class can be made a friend of another class using keyword friend.
Syntax

class A
{
 friend class B; // class B is a friend class

}
class B
{

}

When a class is made a friend class, all the member functions of that class becomes friend function.
If B is declared friend class of A then, all member functions of class B can access private and protected data of
class A but, member functions of class A can not private and protected data of class B.
Note: Remember, friendship relation in C++ is always granted not taken.

Example Friend function
In below example you can access private function of class employee by using friend function.

Example

#include<iostream.h>
#include<conio.h>

class employee
{
private:
 friend void sal();
};

void sal()
{
int salary=4000;
cout<<"Salary: "<<salary;
}

void main()
{
employee e;
sal();
getch();
}

Output

Salary: 4000

inline function:

C++ inline function is powerful concept that is commonly used with classes. If a function is inline, the compiler

places a copy of the code of that function at each point where the function is called at compile time.

Any change to an inline function could require all clients of the function to be recompiled because compiler would

need to replace all the code once again otherwise it will continue with old functionality.

To inline a function, place the keyword inline before the function name and define the function before any calls are

made to the function. The compiler can ignore the inline qualifier in case defined function is more than a line.

A function definition in a class definition is an inline function definition, even without the use of

the inline specifier.

Following is an example, which makes use of inline function to return max of two numbers −

#include <iostream>

using namespace std;

inline int Max(int x, int y) {
 return (x > y)? x : y;
}
// Main function for the program
int main() {
 cout << "Max (20,10): " << Max(20,10) << endl;
 cout << "Max (0,200): " << Max(0,200) << endl;
 cout << "Max (100,1010): " << Max(100,1010) << endl;
 return 0;
}
OutPut:
Max (20,10): 20
Max (0,200): 200
Max (100,1010): 1010

inline Function Example Program

#include<iostream.h>
#include<conio.h>

class line {
public:
 inline float mul(float x, float y) {
 return (x * y);
 }
 inline float cube(float x) {
 return (x * x * x);
 }
};

void main() {
 line obj;
 float val1, val2;
 clrscr();
 cout << "Enter two values:";
 cin >> val1>>val2;
 cout << "\nMultiplication value is:" << obj.mul(val1, val2);
 cout << "\n\nCube value is :" << obj.cube(val1) << "\t" <<
obj.cube(val2);
 getch();
}

Output
Enter two values: 5 7
Multiplication Value is: 35
Cube Value is: 25 and 343

Private Member Function

A function declared inside the class's private section is known as "private member function". A private

member function is accessible through the only public member function. (Read more: data members and

member functions in C++).

Example:

In this example, there is a class named "Student", which has following data members and member

functions:

• Private

o Data members

▪ rNo - to store roll number

▪ perc - to store percentage

o Member functions

▪ inputOn() - to print a message "Input start..." before reading the roll number and

percentage using public member function.

▪ inputOff() - to print a message "Input end..." after reading the roll number and

percentage using public member function.

• Public

o Member functions

▪ read() - to read roll number and percentage of the student

https://www.includehelp.com/cpp-tutorial/data-members-and-member-functions.aspx
https://www.includehelp.com/cpp-tutorial/data-members-and-member-functions.aspx

▪ print() - to print roll number and percentage of the student

Here, inputOn() and inputOff() are the private member functions which are calling inside public member

function read().

Program:

#include <iostream>

class Student

{ private:

 int rNo;

 float perc;

 //private member functions

 void inputOn(void)

 {

 cout<<"Input start..."<<endl;

 }

 void inputOff(void)

 {

 cout<<"Input end..."<<endl;

 }

 public: //public member functions

 void read(void)

 { //calling first member function

 inputOn();

 //read rNo and perc

 cout<<"Enter roll number: ";

 cin>>rNo;

 cout<<"Enter percentage: ";

 cin>>perc;

 //calling second member function

 inputOff();

 }

 void print(void)

 {

 cout<<endl;

 cout<<"Roll Number: "<<rNo<<endl;

 cout<<"Percentage: "<<perc<<"%"<<endl;

 }

};

//Main code

int main()

{ //declaring object of class student

 Student std;

 //reading and printing details of a student

 std.read();

 std.print();

 return 0; }

Output
Input start...

Enter roll number: 101

Enter percentage: 84.02

Input end...

Roll Number: 101

Percentage: 84.02%

Static Keyword in C++

Static variables in C

Static keyword has different meanings when used with different types. We can use static keyword with:

Static Variables : Variables in a function, Variables in a class

Static Members of Class : Class objects and Functions in a class

Static variables in a Function: When a variable is declared as static, space for it gets allocated for the

lifetime of the program. Even if the function is called multiple times, space for the static variable is allocated

only once and the value of variable in the previous call gets carried through the next function call. This is

useful for implementing C++ or any other application where previous state of function needs to be stored.

#include <iostream>
#include <string>
using namespace std;

void demo()
{
 // static variable
 static int count = 0;
 cout << count << " ";

 // value is updated and
 // will be carried to next
 // function calls
 count++;
}
int main()
{
 for (int i=0; i<5; i++)
 demo();
 return 0;
}
Output:
0 1 2 3 4

Static class members:
A static member is shared by all objects of the class. All static data is initialized to zero

when the first object is created, if no other initialization is present. We can't put it in the

class definition but it can be initialized outside the class as done in the following example by

redeclaring the static variable, using the scope resolution operator :: to identify which class

it belongs to.
#include<iostream>
using namespace std;
class GfG
{
 public:
 static void printMsg()// static member function
 {
 cout<<"Welcome to GfG!";
 }
};
 int main()
{
 GfG::printMsg(); }
Output:
Welcome to GfG!

https://www.geeksforgeeks.org/static-variables-in-c/
https://www.geeksforgeeks.org/coroutines-in-c-cpp/

Static Function Members:

By declaring a function member as static, you make it independent of any particular object of

the class. A static member function can be called even if no objects of the class exist and

the static functions are accessed using only the class name and the scope resolution operator ::.

A static member function can only access static data member, other static member functions and

any other functions from outside the class.

Static member functions have a class scope and they do not have access to the this pointer of

the class. You could use a static member function to determine whether some objects of the

class have been created or not.

Passing objects to function

The objects of a class can be passed as arguments to member functions as well as nonmember functions

either by value or by reference. When an object is passed by value, a copy of the actual object is created

inside the function. This copy is destroyed when the function terminates. Moreover, any changes made to

the copy of the object inside the function are not reflected in the actual object. On the other hand, in pass

by reference, only a reference to that object (not the entire object) is passed to the function. Thus, the

changes made to the object within the function are also reflected in the actual object.

Whenever an object of a class is passed to a member function of the same class, its data members can be

accessed inside the function using the object name and the dot operator. However, the data members of

the calling object can be directly accessed inside the function without using the object name and the dot

operator.

To understand how objects are passed and accessed within a member function, consider this example.

Example: A program to demonstrate passing objects by value to a member function of the same class

 #include<iostream.h>

class weight

{

int kilogram;

int gram;

public:

void getdata ();

void putdata ();

void sum_weight (weight,weight) ;

} ;

void weight :: getdata()

{

cout<<"/nKilograms:";

cin>>kilogram;

cout<<"Grams:";

cin>>gram;

}

void weight :: putdata ()

{

cout<<kilogram<<" Kgs. and"<<gram<<" gros.\n";

}

void weight :: sum_weight(weight wl,weight w2)

{

gram = wl.gram + w2.gram;

kilogram=gram/1000;

gram=gram%1000;

kilogram+=wl.kilogram+w2.kilogram;

}

int main ()

{

weight wl,w2 ,w3;

cout<<"Enter weight in kilograms and grams\n";

cout<<"\n Enter weight #1" ;

wl.getdata();

cout<<" \n Enter weight #2" ;

w2.getdata();

w3.sum_weight(wl,w2);

cout<<"/n Weight #1 = ";

wl.putdata();

cout<<"Weight #2 = ";

w2.putdata();

cout<<"Total Weight = ";

w3.putdata();

return 0;

}

The output of the program is

Enter weight in kilograms and grams

Enter weight #1

Kilograms: 12

Grams: 560

Enter weight #2

Kilograms: 24

Grams: 850

Weight #1 = 12 Kgs. and 560 gms.

Weight #2 = 24 Kgs. and 850 gms.

Total Weight = 37 Kgs. and 410 gms.

Function Overloading in C++

C++ allows you to specify more than one definition for a function name or an operator in the same

scope, which is called function overloading and operator overloading respectively.

An overloaded declaration is a declaration that is declared with the same name as a previously declared

declaration in the same scope, except that both declarations have different arguments and obviously

different definition (implementation).

When you call an overloaded function or operator, the compiler determines the most appropriate

definition to use, by comparing the argument types you have used to call the function or operator with

the parameter types specified in the definitions. The process of selecting the most appropriate overloaded

function or operator is called overload resolution.

Function overloading is a feature in C++ where two or more functions can have the same name but

different parameters.

Function overloading can be considered as an example of polymorphism feature in C++.

Following is a simple C++ example to demonstrate function overloading.

#include <iostream>

using namespace std;

void print(int i) {

 cout << " Here is int " << i << endl;

}

void print(double f) {

 cout << " Here is float " << f << endl;

}

void print(char const *c) {

 cout << " Here is char* " << c << endl;

}

int main() {

 print(10);

 print(10.10);

 print("ten");

 return 0;

}
Output:

Here is int 10

Here is float 10.1

Here is char* ten

Arrays
An array is a series of elements of the same type placed in contiguous memory locations that can be

individually referenced by adding an index to a unique identifier.

That means that, for example, five values of type int can be declared as an array without having to

declare 5 different variables (each with its own identifier). Instead, using an array, the five int values

are stored in contiguous memory locations, and all five can be accessed using the same identifier, with

the proper index.

For example, an array containing 5 integer values of type int called foo could be represented as:

where each blank panel represents an element of the array. In this case, these are values of type int.

These elements are numbered from 0 to 4, being 0 the first and 4 the last; In C++, the first element in an

array is always numbered with a zero (not a one), no matter its length.

Like a regular variable, an array must be declared before it is used. A typical declaration for an array in

C++ is:
type name [elements];

where type is a valid type (such as int, float...), name is a valid identifier and the elements field

(which is always enclosed in square brackets []), specifies the length of the array in terms of the

number of elements.

Therefore, the foo array, with five elements of type int, can be declared as:

 int foo [5];

NOTE: The elements field within square brackets [], representing the number of elements in the

array, must be a constant expression, since arrays are blocks of static memory whose size must be

determined at compile time, before the program runs.

Initializing arrays

By default, regular arrays of local scope (for example, those declared within a function) are left

uninitialized. This means that none of its elements are set to any particular value; their contents are

undetermined at the point the array is declared.

But the elements in an array can be explicitly initialized to specific values when it is declared, by

enclosing those initial values in braces {}. For example:

 int foo [5] = { 16, 2, 77, 40, 12071 };

This statement declares an array that can be represented like this:

The number of values between braces {} shall not be greater than the number of elements in the array.

For example, in the example above, foo was declared having 5 elements (as specified by the number

enclosed in square brackets, []), and the braces {} contained exactly 5 values, one for each element. If

declared with less, the remaining elements are set to their default values (which for fundamental types,

means they are filled with zeroes). For example:

 int bar [5] = { 10, 20, 30 };

Will create an array like this:

The initializer can even have no values, just the braces:

 int baz [5] = { };

This creates an array of five int values, each initialized with a value of zero:

When an initialization of values is provided for an array, C++ allows the possibility of leaving the square

brackets empty []. In this case, the compiler will assume automatically a size for the array that matches

the number of values included between the braces {}:

 int foo [] = { 16, 2, 77, 40, 12071 };

After this declaration, array foo would be 5 int long, since we have provided 5 initialization values.

Finally, the evolution of C++ has led to the adoption of universal initialization also for arrays. Therefore,

there is no longer need for the equal sign between the declaration and the initializer. Both these

statements are equivalent:

1

2

int foo[] = { 10, 20, 30 };

int foo[] { 10, 20, 30 };

Static arrays, and those declared directly in a namespace (outside any function), are always initialized. If

no explicit initializer is specified, all the elements are default-initialized (with zeroes, for fundamental

types).

Accessing the values of an array

The values of any of the elements in an array can be accessed just like the value of a regular variable of

the same type. The syntax is:

name[index]

Following the previous examples in which foo had 5 elements and each of those elements was of

type int, the name which can be used to refer to each element is the following:

For example, the following statement stores the value 75 in the third element of foo:

 foo [2] = 75;

and, for example, the following copies the value of the third element of foo to a variable called x:

 x = foo[2];

Therefore, the expression foo[2] is itself a variable of type int.

Notice that the third element of foo is specified foo[2], since the first one is foo[0], the second one

is foo[1], and therefore, the third one is foo[2]. By this same reason, its last element is foo[4].

Therefore, if we write foo[5], we would be accessing the sixth element of foo, and therefore actually

exceeding the size of the array.

In C++, it is syntactically correct to exceed the valid range of indices for an array. This can create

problems, since accessing out-of-range elements do not cause errors on compilation, but can cause

errors on runtime. The reason for this being allowed will be seen in a later chapter when pointers are

introduced.

At this point, it is important to be able to clearly distinguish between the two uses that brackets [] have

related to arrays. They perform two different tasks: one is to specify the size of arrays when they are

declared; and the second one is to specify indices for concrete array elements when they are accessed.

Do not confuse these two possible uses of brackets [] with arrays.

1

2

int foo[5]; // declaration of a new array

foo[2] = 75; // access to an element of the array.

The main difference is that the declaration is preceded by the type of the elements, while the access is

not.

Some other valid operations with arrays:

1

2

3

4

foo[0] = a;

foo[a] = 75;

b = foo [a+2];

foo[foo[a]] = foo[2] + 5;

For example:

1

2

3

4

5

6

7

8

9

10

11

12

// arrays example

#include <iostream>

using namespace std;

int foo [] = {16, 2, 77, 40, 12071};

int n, result=0;

int main ()

{

 for (n=0 ; n<5 ; ++n)

 {

 result += foo[n];

12206 Edit

&

Run

http://www.cplusplus.com/doc/tutorial/arrays/
http://www.cplusplus.com/doc/tutorial/arrays/
http://www.cplusplus.com/doc/tutorial/arrays/

13

14

15

16

 }

 cout << result;

 return 0;

}

Multidimensional arrays

Multidimensional arrays can be described as "arrays of arrays". For example, a bidimensional array can

be imagined as a two-dimensional table made of elements, all of them of a same uniform data type.

jimmy represents a bidimensional array of 3 per 5 elements of type int. The C++ syntax for this is:

 int jimmy [3][5];

and, for example, the way to reference the second element vertically and fourth horizontally in an

expression would be:

 jimmy[1][3]

(remember that array indices always begin with zero).

Multidimensional arrays are not limited to two indices (i.e., two dimensions). They can contain as many

indices as needed. Although be careful: the amount of memory needed for an array increases

exponentially with each dimension. For example:

 char century [100][365][24][60][60];

declares an array with an element of type char for each second in a century. This amounts to more than

3 billion char! So this declaration would consume more than 3 gigabytes of memory!

At the end, multidimensional arrays are just an abstraction for programmers, since the same results can

be achieved with a simple array, by multiplying its indices:

1

2

int jimmy [3][5]; // is equivalent to

int jimmy [15]; // (3 * 5 = 15)

With the only difference that with multidimensional arrays, the compiler automatically remembers the

depth of each imaginary dimension. The following two pieces of code produce the exact same result, but

one uses a bidimensional array while the other uses a simple array:

multidimensional array pseudo-multidimensional array

#define WIDTH 5

#define HEIGHT 3

int jimmy [HEIGHT][WIDTH];

int n,m;

int main ()

{

 for (n=0; n<HEIGHT; n++)

 for (m=0; m<WIDTH; m++)

 {

 jimmy[n][m]=(n+1)*(m+1);

 }

}

#define WIDTH 5

#define HEIGHT 3

int jimmy [HEIGHT * WIDTH];

int n,m;

int main ()

{

 for (n=0; n<HEIGHT; n++)

 for (m=0; m<WIDTH; m++)

 {

 jimmy[n*WIDTH+m]=(n+1)*(m+1);

 }

}

None of the two code snippets above produce any output on the screen, but both assign values to the

memory block called jimmy in the following way:

Note that the code uses defined constants for the width and height, instead of using directly their

numerical values. This gives the code a better readability, and allows changes in the code to be made

easily in one place.

Arrays as parameters

At some point, we may need to pass an array to a function as a parameter. In C++, it is not possible to

pass the entire block of memory represented by an array to a function directly as an argument. But what

can be passed instead is its address. In practice, this has almost the same effect, and it is a much faster

and more efficient operation.

To accept an array as parameter for a function, the parameters can be declared as the array type, but

with empty brackets, omitting the actual size of the array. For example:

 void procedure (int arg[])

This function accepts a parameter of type "array of int" called arg. In order to pass to this function an

array declared as:

 int myarray [40];

it would be enough to write a call like this:

 procedure (myarray);

Here you have a complete example:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

// arrays as parameters

#include <iostream>

using namespace std;

void printarray (int arg[], int

length) {

 for (int n=0; n<length; ++n)

 cout << arg[n] << ' ';

 cout << '\n';

}

int main ()

{

 int firstarray[] = {5, 10, 15};

 int secondarray[] = {2, 4, 6, 8,

10};

 printarray (firstarray,3);

 printarray (secondarray,5);

}

5 10 15

2 4 6 8 10

Edit

&

Run

In the code above, the first parameter (int arg[]) accepts any array whose elements are of type int,

whatever its length. For that reason, we have included a second parameter that tells the function the

length of each array that we pass to it as its first parameter. This allows the for loop that prints out the

array to know the range to iterate in the array passed, without going out of range.

In a function declaration, it is also possible to include multidimensional arrays. The format for a

tridimensional array parameter is:

 base_type[][depth][depth]

For example, a function with a multidimensional array as argument could be:

 void procedure (int myarray[][3][4])

Notice that the first brackets [] are left empty, while the following ones specify sizes for their respective

http://www.cplusplus.com/doc/tutorial/arrays/
http://www.cplusplus.com/doc/tutorial/arrays/
http://www.cplusplus.com/doc/tutorial/arrays/

dimensions. This is necessary in order for the compiler to be able to determine the depth of each

additional dimension.

In a way, passing an array as argument always loses a dimension. The reason behind is that, for historical

reasons, arrays cannot be directly copied, and thus what is really passed is a pointer. This is a common

source of errors for novice programmers. Although a clear understanding of pointers, explained in a

coming chapter, helps a lot.

Library arrays

The arrays explained above are directly implemented as a language feature, inherited from the C

language. They are a great feature, but by restricting its copy and easily decay into pointers, they

probably suffer from an excess of optimization.

To overcome some of these issues with language built-in arrays, C++ provides an alternative array type

as a standard container. It is a type template (a class template, in fact) defined in header <array>.

Containers are a library feature that falls out of the scope of this tutorial, and thus the class will not be

explained in detail here. Suffice it to say that they operate in a similar way to built-in arrays, except that

they allow being copied (an actually expensive operation that copies the entire block of memory, and

thus to use with care) and decay into pointers only when explicitly told to do so (by means of its

member data).

Just as an example, these are two versions of the same example using the language built-in array

described in this chapter, and the container in the library:

language built-in array container library array

#include <iostream>

using namespace std;

int main()

{

 int myarray[3] = {10,20,30};

 for (int i=0; i<3; ++i)

 ++myarray[i];

 for (int elem : myarray)

 cout << elem << '\n';

}

#include <iostream>

#include <array>

using namespace std;

int main()

{

 array<int,3> myarray {10,20,30};

 for (int i=0; i<myarray.size(); ++i)

 ++myarray[i];

 for (int elem : myarray)

 cout << elem << '\n';

}

As you can see, both kinds of arrays use the same syntax to access its elements: myarray[i]. Other
than that, the main differences lay on the declaration of the array, and the inclusion of an additional
header for the library array. Notice also how it is easy to access the size of the library array.

http://www.cplusplus.com/%3Carray%3E

